
Supplementary Figure 1: Graphical representation of the generative model.
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Supplementary Figure 2: Score plot of the first two principal components for 131 cells of Grün

et al.1 using ERCC spike-ins. Batches are indicated by colors. (a) Before normalization. (b)

After normalization.
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Supplementary Figure 3: Estimating E[γ] and E[θ] from ERCC spike-ins in the first batch of

2i-grown mESCs of Grün et al.1. (a) The number of sequenced transcripts per cell is plotted

against the number of added transcripts per cell. Dots correspond to ERCC spike-ins. The

solid line represents the linear fit between the expected number of sequenced transcripts and

the number of added transcripts per cell. (b) The proportion of cells having non-zero read

counts of ERCC spike-ins versus the number of added transcripts per cell. The solid line

represents the expected proportion of cells having non-zero read counts of ERCC spike-ins

as a function of the number of added transcripts per cell.
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Supplementary Figure 4: Estimating Var[γ] and Var[θ] from ERCC spike-ins in the first

batch of serum-grown (a,b) or 2i-grown (c,d) mESCs. Squared CV (a,c) and Fano factor

(b,d) are plotted against the number of added transcripts of ERCC spike-ins per cell. Dots

correspond to ERCC spike-ins and the solid line represents the technical noise fit.
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Supplementary Figure 5: Technical noise fit and inference of biological noise using ERCC

spike-ins in 2i-grown mESCs. Squared CV (a) and Fano factor (b) are plotted against the

estimated number of transcripts per cell in 2i-grown mESCs. Gray dots correspond to mouse

genes and blue dots to ERCC spike-ins. The solid red line represents the technical noise fit.

Estimated squared CV (c) and Fano factor (d) of biological noise are plotted against the

estimated number of transcripts per cell.
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Supplementary Figure 6: Technical noise fit and inference of biological noise using ERCC

spike-ins in serum-grown mESCs. Squared CV (a) and Fano factor (b) are plotted against

the estimated number of transcripts per cell. Gray dots correspond to mouse genes and blue

dots to ERCC spike-ins. The solid red line represents the technical noise fit. Estimated

squared CV (c) and Fano factor (d) of biological noise are plotted against the estimated

number of transcripts per cell.
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Supplementary Figure 7: Validation of estimated biological noise of serum-grown mESCs

by single molecule FISH. Bar plot depicts the measured CV (y-axis) of chosen genes by

each method: total noise by scRNA-seq (Cell); Model II and III of Grün et al.1; our noise

decomposition method (Decomposition); single cell FISH (smFISH). Genes chosen by Grün

et al.1 to cover a dynamic range of gene expression are sorted by their expression levels: lowly

expressed genes (Sohlh2, Notch1, Gli2 and Stag3 ), moderately expressed genes (Tpx2), and

highly expressed genes (Pou5f1, Sox2, Pcna2 and Klf4 ). Notch1 is not available in serum-

grown mESCs of Grün et al.1. Error bars represent standard deviation (sd): bootstrap sd for

our predictions; sd derived from estimated standard errors of the parameters of a negative

binomial distribution for other methods.
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Supplementary Figure 8: Technical noise fit and inference of biological noise of both paternal

and maternal alleles in 2i-grown mESCs. Squared CV of paternal alleles (a) and maternal

alleles (c) versus the estimated number of transcripts per cell. Gray dots correspond to

mouse genes and blue dots to ERCC spike-ins. The solid red line represents the technical

noise fit. Estimated biological squared CV of paternal alleles (b) and maternal alleles (d)

are plotted against the estimated number of transcripts per cell.



Supplementary Figure 9: Schematic representation of simulating single-cell data. Our goal is

to draw read counts kij assuming only technical noise or both technical and biological noise.

To do this, we first estimate the expectation and variance of θj (capture efficiency of cell j)

and γj (sequencing efficiency of cell j) from the external RNA spike-in molecules. The four

parameters (colored in blue) are used to estimate parameters of beta (θj) and gamma (γj)

distributions. By decomposing the total observed variance, we can estimate the expectation

and variance of xij (unobserved number of RNA molecules of gene i in cell j, colored in

green) that are again used to estimate parameters of a gamma distribution for xij . If we

assume only technical noise, we set the variance of xij to 0. We start with xij and draw a

sample from the gamma distribution. We then draw samples (plotted as black circles) in

order (xij , θj , zij , γj , and kij). The samples drawn from parent variables (e.g. xij and θj

are parent variables of zij) are used as parameters of their child variables (plotted as orange

arrows).
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Supplementary Figure 10: Simulated single-cell data reflecting the real scRNA-seq data.

Squared CV of simulated genes in 2i-grown mESCs using the UMI protocol (a) and of

simulated alleles in 2i-grown mESCs using the full length protocol (b) are plotted against

the estimated number of transcripts per cell. Gray dots correspond to genes or alleles

simulated assuming both technical and biological noise (“T+B”) and blue dots to genes

or alleles simulated assuming only technical noise (“T”). The solid red line represents the

technical noise fit by ERCC spike-ins.
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Supplementary Figure 11: (a) Mean fraction of technical and biological variance binned by

expression levels. (b) Fraction of most expressed alleles for SNPs per cell is plotted against

the estimated number of transcripts per cell. The dotted red line represents the mean fraction

of most expressed alleles for SNPs binned by expression levels. The number of bins is 30. (c)

When we decreased the binning resolution, the spike between 1.5 and 2.5 disappeared. The

number of bins is 15. (d) Mean fraction of expressed SNPs with allelic ratio larger than 0.95

in at least one cell. Colors indicate different approaches for computing the mean fraction by

scRNA-seq measurements (mESCs), ”T” model with an allelic ratio fixed to 0.5, and ”T+B”

model with an allelic ratio fixed to 0.5.
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Supplementary Figure 12: Number of expressed genes versus the expression cutoff. The

number of expressed genes is defined by the number of genes with the estimated number of

transcripts per cell larger than the given cutoff for at least one allele.
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Supplementary Figure 13: Overestimation of the expression levels of SNPs near the starts

and ends of annotated genes. (a) Squared CV of the sum of normalized read count by αij

mapped to both paternal and maternal alleles versus the mean normalized read count. Red

dots correspond to SNPs with their effective lengths smaller than the length of reads (100 in

this study). (b) The effective lengths of SNPs near the starts and ends of annotated genes

are set to the length of reads (100).
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Supplementary Figure 14: Mean Spearman’s rank correlation coefficients for SNPs binned

by expression levels with colors as in Fig. 5b. (a) For each SNP, cells with the estimated

number of transcripts covering both alleles fewer than 5 were not included. (b) We did not

filter out cells with the estimated number of transcripts covering both alleles fewer than 5.

Error bars denote 95% CIs by bootstrap (100 bootstrap samples).



Supplementary Note 1: A generative model for technical noise

Let kij be the observed read count of spike-in RNA molecule i in cell j. kij can be the

number of sequenced transcripts if unique molecular identifiers (UMIs) are used. Assuming

that each cell’s lysate is spiked with a mixture of synthetic RNAs of known concentration,

the observed count kij can be generated by the following model:

1. The number of transcripts available for sequencing following reverse transcription and

cDNA amplification for spike i in cell j,zij , is selected from a binomial distribution:

zij ∼ Binomial(zij|xi, θj)

where xi is the known number of added spike-in transcripts and θj is the capture

efficiency for cell j. The capture efficiency explains the stochastic RNA loss during

the sample preparation procedure prior to sequencing. It should be noted that we do

not model cell lysis inefficiencies since the external RNA spike-ins are added after cell

lysis.

2. Given zij , the observed read count is Poisson distributed such that

kij ∼ Poisson(kij|γjαijzij)

where γj is the amplification factor (or sequencing efficiency) of cell j converting the

number of transcripts to the observed read count, and αij is the product of the length

of spike-in RNA imeasured in kilobase and the normalization factor for cell j estimated



using DESeq2. If kij is the number of sequenced transcripts obtained by UMIs, αij is

equal to 1. γj is still needed to reflect cell-to-cell variability in sequencing efficiency.

To allow cell-to-cell variability in the capture efficiency and amplification factor, γj and θj

are treated as random variables and assumed to be independent, but we do not assume

a distribution of a specific form. More formally, the γj are independently and identically

distributed with finite mean and variance such that

E[γj] = E[γ]

Var[γj] = Var[γ]

The same assumptions apply to θj .

Supplementary Note 2: Estimating parameters

We estimate the four parameters E[γ],Var[γ], E[θ] and Var[θ] using the observed ERCC

spike-in counts. We first estimate the expected value of the product of γ and θ, E[η] =

E[γ]E[θ], by relating the sample mean of kij to a linear function of xi. Letting ki =

1
M

∑M

j=1
kij
αij

, the expected value of ki is given by

E[ki] = E[γ]E[θ]xi

Suppose that there exist N spike-in molecules, {(xi, ki)}
N
i=1, which are independent and

identically distributed. The linear least squares estimate Ê[η] is the solution to

min
E[η]

N∑

i=1

(ki − E[η]xi)
2 (1)



where we have a closed form solution

Ê[η] =

∑N

i=1 kixi∑N

i=1 x
2
i

.

Second, E[γ] and E[θ] can be separately estimated by noting the nonlinear rela-

tion between the proportion of cells having non-zero read counts and xi. Letting pi =

1
M

∑M

j=1 1(kij > 0), we obtain

E[pi] = 1−
1

M

M∑

j=1

Ezij ,θj ,γj [e
−γjαijzij ]

= 1−
1

M

M∑

j=1

Eθj ,γj

[(
1− θj + θje

−γjαij
)xi
]

≈ 1−
1

M

M∑

j=1

(
1− E[θ] + E[θ]e−

E[η]
E[θ]

αij

)xi

.

where we use first-order Taylor approximation in (γj, θj). Plugging the least squares estimate

Ê[η] into the above equation, the nonlinear least squares estimate Ê[θ] (and Ê[γ] by dividing

Ê[η] by Ê[θ]) can be obtained by solving the following constrained optimization problem

min
E[θ]

N∑

i=1

(
pi −

(
1−

1

M

M∑

j=1

(
1−E[θ] + E[θ]e−

Ê[η]
E[θ]

αij

)xi

))2

(2)

subject to 0 ≤ E[θ] ≤ 1.

We use the nlsLM function (a modification of the Levenberg-Marquardt algorithm) in the

minpack.lm R package by setting the lower bound and upper bound of E[θ] to 0 and 1,

respectively.

Finally, we estimate the remaining parameters Var[γ] and Var[θ] based on the Fano fac-

tor. By the general variance decomposition formula3, the variance of kij can be decomposed



into

Var[kij] =

shot noise︷ ︸︸ ︷
E[Var[kij|zij , θj , γj]] +

variation generated by zij︷ ︸︸ ︷
E[Var[E[kij|zij , θj, γj]|θj , γj]]

+

variation generated by θj︷ ︸︸ ︷
E[Var[E[kij|θj , γj]|γj]] +

variation generated by γj︷ ︸︸ ︷
Var[E[kij |γj]]

The first term explains the variation coming from sources other than zij , θj and γj, which

corresponds to Poisson noise (or shot noise) in this model and is given by

E[Var[kij|zij , θj, γj]] = E[γ]E[θ]αijxi

The second term quantifies the variation generated by the stochastic RNA loss during the

sample preparation procedure (not cell lysis), which is given by

E[Var[E[kij |zij, θj , γj]|θj, γj]] =
(
Var[γ] + E[γ]2

)
α2
ijxi

(
E[θ]−

(
Var[θ] + E[θ]2

))

The third term quantifies the variation generated by fluctuations in capture efficiency θj

between cells, which follows from

E[Var[E[kij|θj , γj]|γj]] = E[Var[kij |γj]−Var[kij |θj, γj]]

by the law of total conditional variance3

Var[kij|γj] = E[Var[kij|θj , γj]|γj] + Var[E[kij|θj , γj]|γj]

This term is given by

E[Var[E[kij|θj , γj]|γj]] =
(
Var[γ] + E[γ]2

)
Var[θ]α2

ijx
2
i

The last term quantifies the variation attributable to cell-to-cell fluctuations in the amplifi-

cation factor γj, which is given by

Var[E[kij |γj]] = Var[γ]E[θ]2α2
ijx

2
i



For convenience, we compute the variance of
kij
αij

Var

[
kij

αij

]
=

(
E[γ]E[θ]

αij

+
(
Var[γ] + E[γ]2

) (
E[θ]−

(
Var[θ] + E[θ]2

)))
xi

+
((
Var[γ] + E[γ]2

)
Var[θ] + Var[γ]E[θ]2

)
x2
i

CV 2

[
kij

αij

]
=

(
1

E[γ]E[θ]αij

+
(Var[γ] + E[γ]2)

E[γ]2E[θ]2
(
E[θ]−

(
Var[θ] + E[θ]2

))) 1

xi

+
(Var[γ] + E[γ]2) Var[θ] + Var[γ]E[θ]2

E[γ]2E[θ]2

F

[
kij

αij

]
=

1

αij

+
(Var[γ] + E[γ]2)

E[γ]E[θ]

(
E[θ]−

(
Var[θ] + E[θ]2

))

+
(Var[γ] + E[γ]2) Var[θ] + Var[γ]E[θ]2

E[γ]E[θ]
xi

Let wi be the sample variance for spike-in i based upon the normalized read count
kij
αij

such

that

wi =
1

M − 1

M∑

j=1

(
kij

αij

− ki

)2

Based on the expectation of the sample variance wi and sample mean ki, the Fano factor

can be derived independently of the cell index j

F[i] =
E[wi]

E[ki]
= βi +

(Var[γ] + E[γ]2)

E[γ]

(
1−

(Var[θ] + E[θ]2)

E[θ]

)

+
(Var[γ] + E[γ]2)Var[θ] + Var[γ]E[θ]2

E[γ]E[θ]
xi

where βi = 1
M

∑M

j=1
1
αij

. Plugging the nonlinear least squares estimates of E[γ] and E[θ]

into F [i], we then estimate Var[γ] and Var[θ] by solving the following nonlinear least squares

problem

min
Var[γ],Var[θ]

N∑

i=1

(
wi

ki
− F [i]

)2

(3)

subject to Var[γ],Var[θ] ≥ 0



We use the nlsLM function in minpack.lm R package by setting the lower bound of Var[γ]

and Var[θ] to 0.

Supplementary Note 3: Decomposing the total variance into the technical and

biological variance

We are interested in estimating the biological variance from the variance of observed read

counts whilst accounting for the technical variance. Our proposed generative model provides

a statistically sound framework for this purpose with no further assumptions on the form of

distributions of observed read counts or the number of transcripts in a single cell.

Suppose that xij (the number of transcripts of gene i in cell j) is a random variable

with mean µi and variance σ2
i . It should be noted that xij is allowed to vary across cells,

which allows biological noise to be incorporated. The expectation of kij is given by

E[kij] = E[γ]E[θ]αijµi

where αij = 1 for tag-based scRNA-seq experiments. For the length of SNPs, see Supple-

mentary Note 7.

By the general variance decomposition formula, the variance of kij can be decomposed



into

Var[kij] =

shot noise︷ ︸︸ ︷
E[Var[kij |zij, θj , γj, xij]] +

variation generated by zij︷ ︸︸ ︷
E[Var[E[kij |zij , θj, γj, xij ]|θj, γj, xij ]]

+

biological noise︷ ︸︸ ︷
E[Var[E[kij|θj , γj, xij]|γ, θ]] +

variation generated by θj︷ ︸︸ ︷
E[Var[E[kij |γj, θj]|γj]]

+

variation generated by γj︷ ︸︸ ︷
Var[E[kij|γj]]

where

E[Var[kij |zij, θj , γj, xij]] = E[γ]E[θ]αijµi

E[Var[E[kij|zij , θj , γj, xij ]|θj , γj, xij]] =
(
Var[γ] + E[γ]2

)

α2
ijµi

(
E[θ]−

(
Var[θ] + E[θ]2

))

E[Var[E[kij |θj, γj, xij ]|γj, θj]] = (Var[γ] + E[γ]2)(Var[θ] + E[θ]2)α2
ijσ

2
i

E[Var[E[kij |γj, θj]|γj]] =
(
Var[γ] + E[γ]2

)
Var[θ]α2

ijµ
2
i

Var[E[kij |γj]] = Var[γ]E[θ]2α2
ijµ

2
i

For each gene, the expectation of the sample variance wi of the normalized count
kij
αij

is given

by

E[wi] =
(
βiE[γ]E[θ] +

(
Var[γ] + E[γ]2

) (
E[θ]−

(
Var[θ] + E[θ]2

)))
µi +

((
Var[γ] + E[γ]2

)
Var[θ] + Var[γ]E[θ]2

)
µ2
i +

(Var[γ] + E[γ]2)(Var[θ] + E[θ]2)σ2
i



The biological variance estimate σ̂i
2 is given by

σ̂i
2 =

1

(V̂ar[γ] + Ê[γ]
2
)(V̂ar[θ] + Ê[θ]

2
)
{wi−

(
βiÊ[γ]Ê[θ] +

(
V̂ar[γ] + Ê[γ]

2)(
Ê[θ]−

(
V̂ar[θ] + Ê[θ]

2)))
µ̂i−

((
V̂ar[γ] + Ê[γ]

2)
V̂ar[θ] + V̂ar[γ]Ê[θ]

2)
µ̂i

2
}

where

µ̂i =
ki

Ê[γ]Ê[θ]

Supplementary Note 4: Adjusting for batch effects

The two single-cell data sets, comprising a set of 80 mESCs cultured in the serum condition

and a set of 80 mESCs cultured in the 2i condition, were processed in multiple batches. Two

libraries were constructed where the first library contains 40 mESCs (cell 1-40 in serum)

and 40 mESC (cell 1-40 in 2i) and the second library contains the remaining cells. The

two libraries were split into two halves and sequenced on different lanes, resulting in four

batches. For each batch, the same amount of ERCC spike-ins were added. Supplementary

Fig. 2a shows a PCA plot of all cells using the number of transcripts of ERCC spike-ins. All

cells cluster together according to their batch, indicating that there exists significant non-

biological experimental variation across multiple batches. One source of variation within this

data set could be the batch-to-batch variability of E[γ] and E[θ]. To examine this possibility,

we estimated E[η] = E[γ]E[θ] and divided kij by Ê[η] for each batch, which is equivalent to

converting the number of sequenced transcripts to the number of transcripts within a single



cell. Supplementary Fig. 2b shows that this normalization procedure adjusts the data for

batch effects, suggesting that batch-to-batch variability in sequencing efficiency is the major

source of batch effects.

Supplementary Note 5: Validating the model

To validate the model we examine how well it explains the dispersion observed in the real

data. The model predicts that the variance of kij is a quadratic function of the expression

level xi, meaning that the squared CV is inversely proportional to xi for small values of

xi, but approaches a constant value as the expression level increases. Moreover, the model

predicts that the Fano factor is a linear function of xi. Supplementary Fig. 3 illustrates the

fit to the first batch of the mESC data cultured in the 2i condition. The nonlinear least

squares estimates of E[γ] and E[θ] are

Ê[γ] = 0.2489, Ê[θ] = 0.0712

which suggests that only 1.77% of all transcripts are successfully sequenced in the first batch.

In Supplementary Fig. 4 we explore the mean-variance relationship for the two data sets by

plotting the squared CV (or the Fano factor) versus the number of added transcripts for all

spike-in RNAs (blue circles). The squared CV is inversely proportional to the expression

level and the Fano factor remains constant until xi reaches 100, which is consistent with

the model. As the expression level increases, the squared CV approaches a constant value

and the Fano factor increases. These observations suggest that the variance is a quadratic

function of the expression level, consistent with the predicted mean-variance relationship,



and suggesting that the assumptions underlying the model are valid.

Supplementary Note 6: Simulating single-cell data

We describe two generative models for simulating single-cell data: 1) a “T” model assuming

only technical noise and 2) a “T+B” model assuming both technical and biological noise.

Given the least squares estimates Ê[γ], Ê[θ], V̂ar[γ], V̂ar[θ] and µ̂i, kij can be generated

according to the following “T” model:

1. The capture efficiency of cell j follows a beta distribution

θj ∼ Beta(θj |αθ, βθ)

where

αθ = Ê[θ]

(
Ê[θ](1− Ê[θ])

V̂ar[θ]
− 1

)

βθ = (1− Ê[θ])

(
Ê[θ](1− Ê[θ])

V̂ar[θ]
− 1

)

It should be noted that the above method-of-moments estimates are only valid if

V̂ar[θ] < Ê[θ](1− Ê[θ]).

2. The number of transcripts available for sequencing zij is selected according to a bino-

mial distribution:

zij ∼ Binomial(zij |µ̂i, θj)



where µ̂i =
ki

Ê[γ]Ê[θ]
is the estimated number of transcripts of gene i and we do not allow

cell-to-cell variability in µ̂i.

3. The sequencing efficiency of cell j follows a gamma distribution

γj ∼ Gamma(γj|αγ, βγ)

where

αγ (shape) =
Ê[γ]

2

V̂ar[γ]

βγ (scale) =
V̂ar[γ]

Ê[γ]

4. Given zij , kij is Poisson distributed such that

kij ∼ Poisson(kij|γjαijzij)

The above model can be modified to the “T+B” model by adding the following assumptions

1. The number of transcripts of gene i within cell j (continuous version) follows a gamma

distribution

xij ∼ Gamma(xij |αxi
, βxi

)

where

αxi
(shape) =

µ̂i
2

σ̂i
2

βxi
(scale) =

σ̂i
2

µ̂i



where σ̂i
2 is the biological variance estimate. Under the standard two-state kinetic

model of stochastic gene expression, a gamma distribution is an approximation of

the steady state mRNA density when the rate of gene inactivation is significantly

larger than the rate of gene activation and is larger the rate of degradation (short and

infrequent bursts of mRNA expression)4.

2. The number of transcripts available for sequencing zij is selected according to a bino-

mial distribution:

zij ∼ Binomial(zij |[xij ], θj)

where [xij ] is the round function.

Finally, we generate allele expression counts under two assumptions:

• Unfixed allelic ratio: we separately estimate the mean expression levels of both alleles

(µ̂i
p for paternal allele and µ̂i

m for maternal allele) and independently generate kij for

each allele.

• Fixed allelic ratio (σ = 0.5): we set µ̂i = (µ̂i
p + µ̂i

m)σ for the first allele and µ̂i =

(µ̂i
p + µ̂i

m)(1− σ) for the second allele and then independently generate kij .

Supplementary Note 7: Calculating the effective length of SNPs

In the read-based scRNA-seq experiments, the expression level of a gene is partially pro-

portional to the length of the gene. This is also applicable to SNPs since the number of



mappable positions of reads overlapping SNPs differs depending upon the SNPs relative po-

sitions within a gene. Given paired-end reads, the number of mappable positions of a SNP

(effective length, β) of transcript i, which is used in computing αij , was calculated by

1. if li < f , β = 1.

2. else if pi ≤ f and pi ≤ r, β = pi.

3. else if pi ≤ f and pi > r, β = r +max(pi − f + r, 0)

4. else, β = 2 ∗ r.

where f is the length of fragments (200bp in this study), r is the length of reads (100bp),

li is the length of transcript i, and pi is the position of the SNP within transcript i. If

a SNP is shared by multiple transcript isoforms, we took the maximum of the multiple

values of β. Since most intergenic transcripts are adjacent to 5′- and 3′-ends of known

genes5, the effective length of SNPs near the starts and ends of annotated genes would be

longer. Consistent with this, we observed that normalizing the raw read counts of these

SNPs by their effective length overestimates their expression levels compared to other SNPs

(Supplementary Fig. 13). Therefore, we set the effective length of SNPs near the starts and

ends of annotated genes (β < r) to the length of reads r.



Supplementary Note 8: Shared attributes of genes showing stochastic monoallelic

expression

To identify the shared features of the 427 genes showing stochastic monoallelic expression

(hereafter we define them as the “SM gene set”), we first performed gene ontology (GO)

enrichment analysis by setting up the 7,385 genes with one or more expressed SNPs as a

background. At a given FDR cutoff (Benjamini-Hochberg adjusted P < 0.05), we could

not find any significantly enriched GO terms. We next examined whether transcription

factor (TF) binding or histone modification (HM) patterns are enriched in the SM gene

set. We extracted binary interactions between TF/HM and target genes from the ESCAPE

database (61 TFs and 7 HMs), which are experimentally supported by high-throughput

studies in mESCs6. Since all the genes in the SM gene set are moderately or highly expressed,

active marks (DMAP1, E2F1, E2F4, JARID1A, KDM5B, MAX, MED1, MED12, MYC,

MYCN, NIPBL, SIN3B, SOX2, ZFP42, H3K4me1, H3K4me2, H3K4me3, H3K36me3, and

H3K79me2) are enriched in the SM gene set while inactive marks (EZH2, JARID2, MTF2,

RNF2, SUZ12, H3K9me3, and H3K27me3) are depleted (Benjamini-Hochberg adjusted P <

0.05 by Fisher’s exact test, background set: 7,385 genes with one or more expressed SNPs).

However, when we set up 3,342 genes with ≥ 1 SNP above the expression cutoff (estimated

number of transcripts per cell > 2 for both alleles, this cutoff includes all genes showing

stochastic monoallelic expression) as a background, no TF/HM pattern is associated with

the SM gene set.



Supplementary Note 9: Allelic correlation across cells

We investigated whether the two alleles show independent expression by using Spearman’s

rank correlation coefficients (ρ) to correlate their normalized read counts across cells. We

normalized the raw read counts by size factors estimated from allele counts (Supplementary

Note 1). For each SNP, to capture an “L”-shaped pattern with negative correlation between

the two alleles (Fig. 3b), we excluded cells with an estimated number of transcripts covering

both alleles less than 5. To obtain a null model we independently simulated ASE levels for

54 cells assuming technical noise only or both technical and biological noise (Supplementary

Fig. 14a). Under these models, the expression levels of the two alleles should be uncorre-

lated. However, for both the simulated and real data, we frequently observed an “L”-shaped

pattern with negative correlation between the two alleles for lowly or moderately expressed

genes. In contrast, for highly expressed genes, the observed correlation coefficients were pos-

itive, while simulated correlation coefficients from the two models were ∼ 0. As expected,

when we calculated the Spearman’s ρ without excluding cells expressing two alleles very

lowly, we observed no correlations from both models at all expression levels (Supplementary

Fig. 14b). More specifically, of the 2,685 genes with ≥ 1 SNP above the expression cutoff

(estimated number of transcripts per cell > 1 for both alleles), 66 had significantly higher

correlation than expected (empirical Benjamini-Hochberg adjusted P < 0.05 from 10,000

simulated samples). Since these genes are highly expressed in general, genes involved in

protein synthesis (e.g. “ribosome”) were enriched (Benjamini-Hochberg adjusted P < 0.05,

we set up the 2,685 genes as a background).
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